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Abstract
In this paper we apply a new simulation technique proposed in Wang
and Landau (WL) (2001 Phys. Rev. Lett. 86 2050) to sampling of three-
dimensional lattice and continuous models of polymer chains. Distributions
obtained by homogeneous (unconditional) random walks are compared
with results of entropic sampling (ES) within the WL algorithm. While
homogeneous sampling gives reliable results typically in the range of 4–5
orders of magnitude, the WL entropic sampling yields them in the range of
20–30 orders and even larger with comparable computer effort. A combination
of homogeneous and WL sampling provides reliable data for events with
probabilities down to 10−35.

For the lattice model we consider both the athermal case (self-avoiding
walks, SAWs) and the thermal case when an energy is attributed to each
contact between nonbonded monomers in a self-avoiding walk. For short
chains the simulation results are checked by comparison with the exact data.
In WL calculations for chain lengths up to N = 300 scaling relations for
SAWs are well reproduced. In the thermal case distribution over the number of
contacts is obtained in the N-range up to N = 100 and the canonical averages—
internal energy, heat capacity, excess canonical entropy, mean square end-to-
end distance—are calculated as a result in a wide temperature range.

The continuous model is studied in the athermal case. By sorting
conformations of a continuous phantom freely joined N-bonded chain with
a unit bond length over a stochastic variable, the minimum distance between
nonbonded beads, we determine the probability distribution for the N-bonded
chain with hard sphere monomer units over its diameter a in the complete
diameter range, 0 � a � 2, within a single ES run. This distribution provides us
with excess specific entropy for a set of diameters a in this range. Calculations
were made for chain lengths up to N = 100 and results were extrapolated to
N → ∞ for a in the range 0 � a � 1.25.
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1. Introduction

The Monte Carlo (MC) method introduced fifty years ago by Metropolis et al [1] proved to
be a powerful tool in studying a large variety of highly nonideal molecular systems [2, 3].
It appeared though that the conventional MC procedure becomes ineffective or even fails in
a number of important physical situations. In order to calculate free energy or entropy of a
condensed system, to study systems having rough multiminima potential landscapes (clusters,
glasses, protein molecules), to treat phase transitions and other phenomena occurring at
low temperatures, high densities or in the presence of complicated molecular components,
one had to modify standard approaches. Such modifications proposed about ten years
ago led to methods known now under the common name of generalized ensembles MC
(see reviews [4, 5]). They are expanded ensemble MC or simulated tempering [6, 7] and
multicanonic or entropic sampling [8, 9]. These methods proved to be efficient in solving
problems mentioned above though they have their own common drawback, i.e. they require
a preliminary adjustment of a set of parameters (‘balancing factors’ [6]) playing a key role
in simulations. The parameters are initially unknown and are usually obtained iteratively
in preliminary MC runs. This iterative stage sometimes is referred to as ‘tedious and time
consuming’. A replica exchange method suitable for parallel calculations [5, 10] provided
one way to avoid this preliminary stage. Another way recently suggested by Wang and
Landau (WL) in [11, 12] allows us to alleviate this drawback in the entropic sampling MC
with the aid of a special self-adjusting procedure. The authors applied their method to
simulate lattice spin systems (Ising and Pott’s models) though the WL algorithm can be readily
implemented in a large variety of molecular systems, thus being of general importance. Since
its formulation in 2001, the WL algorithm has been promptly applied to simulation of a lattice
model of proteins [13], of a polymer film [14], of fluids [15, 16] and in path-integral Monte
Carlo [17].

The aim of this paper is to extend the WL algorithm to entropic sampling (ES) simulations
of polymers starting with simple three-dimensional models. In order to explore the facilities of
the method we consider a chain on a simple cubic (SC) lattice and a freely joined continuous
model with rigid unit length bonds. The lattice model is considered both in the athermal
case (the self-avoiding walk (SAW)) and the thermal case (when interactions of nonbonded
monomers occurring in contact are accounted for). For the athermal case our numerical results
are compared with scaling relations for SAWs [18, 19]. In the thermal case we compare our
results with the data of Douglas et al [20] and Grassberger and Hegger [21]. For short chains
(N ∼ 10) the numerical result can be compared with the exact data obtained by consecutive
enumeration of all possible lattice conformations. Obtaining the distribution of SAWs over
the number of contacts enables us to calculate the temperature dependences of conformational
internal energy, heat capacity, entropy, mean square end-to-end distance and the expansion
factor for different chain lengths N.

The continuous model is studied only in the athermal case when monomer units are
represented by hard spheres. By sorting conformations of a phantom chain over a specially
introduced stochastic variable, the minimum distance between nonbonded beads, we determine
the distribution for a free joined chain with hard sphere monomers over their diameter a within
a single MC run.

It is important to stress here that a huge amount of analytical and simulation work has
already been done so far in studying various types of polymer systems and particularly lattice
models (e.g., [22–24] and references therein). A lot of simulation techniques were proposed
mostly stemming from the early work of Rosenbluth and Rosenbluth [25]. Thus, the pruned-
enriched Rosenbluth method developed by Grassberger [26] allows us to simulate very long
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lattice chains—up to N = 106. The approach presented below in this paper could hopefully
add some new opportunities to simulation techniques suggested and used so far.

The plan of the paper is as follows. In section 2 we discuss the general idea of the entropic
sampling within the WL algorithm. An approach to the simulation of the lattice model in
both cases, the obtained results and their treatment is given in section 3. In section 4 the
WL algorithm is applied to the continuous model. A method providing calculation of excess
entropy as a function of the diameter of monomer units in a single MC run is suggested and
carried out. Section 5 contains final remarks.

2. ES method within Wang–Landau algorithm

Consider a canonical configurational partition function in the form:

Z =
∫

dE�(E) exp(−βE) �(E) =
∫

dqδ(E − H(q)) (1)

where �(E) is the density of energy states, β = T −1 is the inverse temperature (energy units)
and q is the set of coordinates.

A step within the conventional metropolis MC method includes a uniform choice of a
trial microstate in the coordinate space (q) which provides energy distribution �(E) and
imposing an additional condition which accounts for the canonical factor, exp(−βH(q)).
As a result of a MC run based on this procedure one finally gets the distribution in energy:
p(E) = const · �(E) exp(−βE). Its particular case is that obtained in a purely unconditional
random walk (URW) yielding p(E) = �(E); formally it corresponds to the one above at
infinite temperature, β = 0.

On the other hand, if we arrange the random walk so that the additional factor (instead
of the canonical probability exp(−βH(q))) is chosen to be the inverse of �(E), i.e.
w(E(q)) = [�(E(q))]−1, then the ‘natural’ weight �(E) is being completely compensated
and the distribution p(E) becomes homogeneous (‘flat’) [9].

As long as �(E) is initially unknown, being the aim of the ES calculations, an iterative
procedure becomes necessary. Obtaining nearly flat p(E) dependence testifies that the
iterated function w(E) is close to the required function. An effective means of obtaining
flat distribution p(E) was suggested recently by Wang and Landau (WL) in papers [11, 12].
The WL algorithm can be considered as a self- (or auto-) adjusting procedure for obtaining
�(E) in ES simulations.

The energy range of interest, Emin � E � Emax, is divided into a finite number, Nb,
of equal intervals (‘boxes’), �E = (Emax−Emin)

Nb
, and all the initial values of �i corresponding

to these boxes (1 � i � Nb) are taken to be equal (e.g., in [11], initially �i = 1). In
order to avoid processing with large numbers it is convenient to introduce entropy distribution
Si = ln �i (in [11] initially Si = 0). Two sets of counters of length Nb are introduced: one
accumulates Si (entropy boxes); another, ni , counts visits to boxes yielding at the end of the
run the normalized visit probabilities pi (the histogram). Each configuration of the simulated
system has its definite value of energy and hence it belongs to one of the Nb boxes.

A MC step includes a standard trial change of the state with a uniform coordinate
distribution and further imposing of the following transition probability condition:

p(i → i ′) = min[1, exp(Si − Si ′)]. (2)

If this condition is fulfilled the trial state (i ′) is accepted; in the opposite case the accepted
one is the initial state (i). Finally, the entropy of the accepted state (Si or Si ′) is augmented by
�S and the corresponding counter of visits (ni or ni ′ ) is increased by 1.
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A series of such elementary steps constitute a sweep. At the end of a current sweep �S

is decreased: �S → c�S with an increment of 0 < c < 1 (in [11], the initial value of �S is
1 and c = 0.5 though other values could also be used).

After several sweeps, the Si dependence is formed and finetuned in the whole range of E.
Further continuing the procedure results only in the addition of a constant to the Si-dependence.
It is accompanied by simultaneous formation of a flat histogram pi .

This way the normalized density of states �(E) = exp(S(E)) can be calculated rather
accurately in a very wide range of orders of magnitude, e.g., from 10−1 to 10−30 or even to
lower orders (see below). It provides calculation of the canonical partition function (1) and
averages, such as configurational energy and heat capacity, in a wide temperature range by
numerical integration.

3. Lattice model

Within the lattice model a polymer chain is presented by a random walk (RW) on a
d-dimensional lattice starting at the origin. The total number of conformations for a phantom
chain with N + 1 monomers and N bonds is zN , where z is the number of nearest neighbours
of the lattice. For a 3D SC lattice which is considered below z = 6.

The effect of excluded volume for the athermal case implies excluding all RWs with
intersections (overlaps) leaving only SAWs. The number of SAWs is determined by the
asymptotic scaling relation [18, 20]:

WN = AµNNγ−1. (3)

For the SC lattice connectivity constant µ = 4.6838, susceptibility γ = 7/6 and A = 1.17
[18, 27].

The thermal case also includes interactions of nonbonded monomers when they approach
each other. The simplest scheme, which is usually considered, is an account of interactions of
nonbonded monomers of a SAW occurring at closest contact.

In our simulations, a lattice polymer chain is presented by an array of integer numbers
out of the set (1, 2, . . . , 6) pointing the direction of each segment in the SC lattice. One
end of the chain (the 0th bead) is kept fixed at the origin and the initial directions of all
consecutive segments are chosen randomly. In order to change the chain’s conformation we
choose homogeneously one of the beads from 0 to N − l (e.g., the k0th) and change randomly
the directions of segments between beads k0 and k0 + l. We used values of l, the number
of segments in the modified piece, in the range of [N/5]–[N/20]. The remaining piece,
l < k � N , undergoes a parallel shift. Other ways of changing the conformation could also be
possibly applied here, e.g., the pivot algorithm [23], but in this work we used only the above
described method.

In most cases WL calculations included 25–30 sweeps with initial values of Si = 0,�S =
1 and the increment c = 0.5. The length of a sweep depended on the chain length N and
varied from 1 to 5 million steps for N = 12–300. For different chain lengths the simulation
time on Pentium III 1 GHz computer varied between 15 min and 30 h.

3.1. Athermal case

For the athermal case our general goal is to calculate the number of SAWs for different N
using the WL algorithm and compare them with (3).

Our first concern in this context was to study convergence of the WL algorithm and to
test its facilities when applied to the lattice polymer. It is worth pointing out here that it
is not necessary to associate the entropy boxes introduced above with energy intervals. For
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Figure 1. WL evolution of the normalized n-distribution �n (circles) and visit rates pn (squares)
for a phantom lattice chain, N = 12, compared with exact values for �n (crosses) and with
prescribed level for pn (horizontal line) after 1000 (a), 10 000 (b), 3 million (c), 240 million
(d ) steps; n—number of intersections.

instance, we can relate the entropy boxes to the number of intersections n for an N -bonded
phantom chain, 0 � n � nmax. Its maximum number, nmax, for given N can be determined
exactly through binomial coefficients: nmax(N) = C2

N
2

+ C2
N
2 +1

= (N/2)2 for even N and

nmax(N) = 2C2
N+1

2
= (N + 1)(N − 1)/4 for odd N. The number of conformations with

n = nmax is 6 irrespective of N, so the corresponding probability is 6−(N−1).
The convergence of the WL algorithm for N = 12 is presented in figure 1. It is clearly

seen how the normalized probabilities �n, 0 � n � nmax, starting from equal initial values
�n = 1/Nb, are gradually modified and finally attain values which do not change further
and which coincide with the exact data. The number of boxes, Nb, in this case is equal to
32 though the maximum number of intersections is nmax = (N/2)2 = 36. This is due to the
fact that five numbers of intersections, i.e. n = 29, 32–35, cannot occur at all for N = 12.
Figure 1 illustrates the simultaneous evolution of the visit rates. After about 106 steps all the
probabilities pn are stabilized at the prescribed level, 1/Nb = 1/32 = 0.031 25, and hold at
this level during further WL runs (mean deviation is about 3%).

We carried out calculations of normalized probabilities �n within the WL algorithm
for N = 12, 30, 50 and compared them with those obtained within URW, figure 2. First
of all a very good agreement is observed between both results around the maximum of
distributions within five orders of magnitude (from 10−1 to 10−6), the discrepancy here does
not exceed several per cent, figure 2(b). Out of this range URW results start displaying
great scatter and then the URW completely fails while WL data steadily proceed to much
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Figure 2. Normalized distributions �n for phantom lattice chains (n—number of intersections).
(a) WL data for N: 12 (squares), 30 (diamonds), 50 (circles). (b) Comparison of URW results for
N: 12 (squares), 30 (diamonds), 50 (circles) with WL data (dots for all N ). Crosses denote exact
values.

lower orders which is clearly seen in figure 2(a). It is important to note that the WL
algorithm reproduces sufficiently well values of n-probabilities for the maximum number
of intersections �nmax . For N = 12, 30, 50, nmax = 36, 225, 625 and exact values are:
�nmax = 6−11 = 2.76×10−9; 6−29 = 2.71×10−23; 6−49 = 7.42×10−39, against the obtained
WL values 2.99×10−9; 1.92×10−23; 3.61×10−39, respectively. It should also be mentioned
that two numbers of intersections preceding nmax can also be easily determined exactly, for
even N they are: n1 = (

N
2

)2 − N
2 + 1 and n2 = (

N
2

)2 − N
2 . It yields 31, 30; 211, 210; 601, 600

for N = 12, 30, 50, respectively. Their exact probabilities are: �n1 = 6(N−1) × 5 × N
2 and

�n2 = 6(N−1) × 5 × (
N
2 + 1

)
. These points are also reproduced sufficiently well in WL

calculations, figure 2(a).
For short chains, e.g., N = 12, it is possible to compare the numerical results directly with

exact data obtained by consecutive enumeration of all zN conformations. Such comparison
showed that the WL algorithm reproduces exact data for �n in the whole range of n with the
mean error about several per cent including rare events (e.g., ∼8% for �n ∼ 10−9). URW
reproduces well values of �n in the range ∼10−1–10−5, with the scatter growing to 50% for
�n ∼ 10−6–10−7 and being a complete failure when �n ∼ 10−8–10−9.

For calculating probabilities of SAWs, �0, there exist several opportunities. We can use
the WL algorithm with all numbers of intersections taken as entropy boxes. That was the
procedure in the cases described above. But with increasing N the number of boxes would
increase approximately as nmax = (N/2)2 and can become prohibitively great. Another
extreme possibility is to consider only two boxes: one for nonintersecting chains (SAWs) and
the other for all the other conformations. This scheme was tested and proved to be reliable
only for N � 30. For greater N, the WL scheme with two boxes became unstable: it was
impossible to equilibrate the rates of visits of both boxes.

It appeared that the most reliable results can be obtained in a procedure combining WL and
URW algorithms. The calculation starts with an URW during which the share of conformations
with n � nb, Pr(0, nb), is calculated. If the boundary number of intersections, nb, is chosen so
that this share is several tens of per cent then it can be calculated in an URW rather accurately.
The second step is a WL run within the restricted range of n, 0 � n � nb. If n in a trial state
within the WL process exceeds the boundary value nb this trial is rejected (as a rule the rate
of such rejections did not exceed 5%). Thus, the whole WL process goes within the restricted
range of n including n = 0 which is the item of our concern. Comparison of nb with nmax,
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Table 1. Scaling and WL entropies S, specific excess scaling and WL entropies �S/N and their

relative deviation δ, root mean square end-to-end distance
√

〈R2
SAW〉 for self-avoiding

conformations, expanding factor α, α/N
1
10 , nb, nmax and Pr(0, nb), for N = 12, 30, 100, 150,

200, 300.

N SSC SMC − �SSC
N

− �SMC
N

δ (%)

√〈
R2

SAW

〉
a α

N
1
10

nb nmax Pr(0, bb)

12 19.099 19.105 0.2002 0.1996 0.25 4.5688 1.3189 1.028 70 9 36 0.98
30 47.044 46.993 0.2236 0.2253 0.76 7.9000 1.4423 1.026 49 15 225 0.88

100 155.32 155.28 0.2385 0.2389 0.17 49 2 500 0.81
150 232.59 232.54 0.2411 0.2415 0.14 20.7167 1.6915 1.024 86 69 5 625 0.70
200 309.84 309.82 0.2426 0.2427 0.04 79 10 000 0.43
300 464.31 464.08 0.2441 0.2448 0.32 31.4031 1.8131 1.024 94 149 22 500 0.75

table 1, shows that the range of n used in our WL calculations is a minor part of the whole
n-range, especially for greater chain lengths N. Including an optimal number of intersections
nb into the WL process makes the simulations both stable and computer time saving. The
WL-procedure allows normalized probability of SAWs �′

0 to be obtained within this limited
range of n while the initially obtained Pr(0, nb), the probability of the whole area 0 � n � nb,
provides the total statistical weight of SAWs, �0 = �′

0 × Pr(0, nb).
Thus, results for N = 12, 30, 100, 150, 200, 300 were obtained, table 1. The first two

columns, SSC and SWL, give entropy according to scaling relation (3) and to WL simulation,
SN = ln WN ; here WN = 6N�0 and �0 is the normalized probability of SAW for each N.
The next two columns present excess specific entropies 1

N
�SN = 1

N
ln �0. Good agreement

between scaling- and WL data is observed: deviations for specific values (next column) do not
exceed 1%.

Three further columns in table 1 present the root mean square end-to-end distance,
〈
R2

saw

〉 1
2 ,

expansion factor α = 1√
N

〈
R2

saw

〉 1
2 and α/N1/10. It is seen that the values of the latter remain

constant with a scatter about 0.5% throughout the whole range of N which corresponds to the

scaling relation for SAW:
√〈

R2
saw

〉 ∼ N3/5 [18, 19]. We tested other estimates of the factor ν

(instead of ν = 3/5 = 0.6), i.e. 0.592 from [23, 28] and 0.588 obtained in [29], but neither of
them gave (in the limited range of N studied in our work) better convergence than for ν = 0.6.

The last three columns in table 1 present nb, nmax and Pr(0, nb).

3.2. Thermal case

In order to account for interactions of nonbonded monomers, we attribute an energy ε to each
monomer pair occurring at closest contact. The problem now is to distribute all SAWs among
boxes corresponding to various numbers of contacts, m, which can vary between zero and a
certain finite number mmax dependent on N. As long as the energy of a configuration Em is
the product ε × m, this distribution yields the probability of energy states �(Em) ≡ �0m.
The maximum value of m cannot be obtained as exactly as it was in the case of maximum
number of intersections discussed above. In [20] the upper bound of mmax for the SC lattice
is estimated in the range of chain lengths up to N = 50.

We used two procedures to sort SAWs due to the number of contacts m. In both of them
the whole normalized contribution of SAWs, �0, was determined within the WL algorithm.
In the first procedure all the occurring SAWs were sorted over m unconditionally. In another
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Figure 3. Normalized distributions for SAWs over the number of contacts m,�0m, obtained by
the URW algorithm for N = 12 (squares), 30 (circles), 50 (down triangles), 100 (diamonds) and
by the WL algorithm (dots for all N).

approach the distribution over m was carried out within a WL procedure. The results of
both approaches for normalized probabilities, �0m, are presented in figure 3. Analogous
to the case of intersections in figure 2, we observe good coincidence of both procedures
around the distribution maxima in the range of five orders of magnitude. Out of this range
the unconditional sorting exhibits great scatter and then completely fails while the WL results
steadily follow down to considerably lower orders, for N = 100—down to 10−16. It should also
be stressed here that these distributions should be additionally multiplied by the probabilities
of SAWs �0: for N = 12, 30, 100 �0 = 0.091, 0.0012, 3.9 × 10−11, respectively. It could
also be mentioned here that values for which �0m have maxima for each N, figure 3, coincide
with those of [20] (figure 13(a) in [20]). For N = 12, 30, 50 they are m = 1, 4, 8, 16.

For a short chain, N = 12, we again check our numerical results by comparing them
with the exact data from enumeration of all zN configurations, figure 4. Good coincidence
is observed both for probabilities �0m and for mean square end-to-end distances 〈R〉2

m (see
below). We also compared our WL data obtained for N = 18 with those of [20] for exact
numbers of SAWs with m contacts (table 1 of [20]). The accuracy of our WL calculations is
comparable with that of the Rosenbluth MC data [20] in the whole m-range.

The obtained distributions �0m, figure 3, can now be used for calculating canonical
averages according to standard relations. For internal energy it reads

〈E〉(β) =
∑mmax

m=0 mε exp−βmε �0m∑mmax
m=0 exp−βmε �0m

≡ ε〈m〉can (4)

〈E2〉 is calculated in the same way yielding the heat capacity as a function of temperature:

C(T ) = 1

T 2
(〈E2〉(T ) − (〈E〉(T ))2). (5)

In the expression for the energy (4), the normalization of �0m is not important since
�0m enters both numerator and denominator in (4) and any constant cancels. In order to
calculate free energy and entropy we must use instead the quantity zN�0�0m which is equal
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to the complete number of SAWs with m contacts for a chain with N bonds (both �0 and �0m

depend on N ). So for free energy F we have

−βF = ln
mmax∑
m=0

exp(−βεm)�0�0mzN = N ln z + ln �0 + ln
mmax∑
m=0

exp(−βεm)�0m. (6)

Now the canonical entropy is expressed as

S(β) = β〈E〉 − βF = S0 + �Sat + �S(β) (7)

where S0 = N ln z is the entropy of a phantom chain; �Sat = ln �0 is the excess entropy for
the athermal case (table 1)

�S(β) = β〈E〉 + ln
mmax∑
m=0

exp(−βεm)�0m (8)

is the excess canonical entropy (it vanishes for ε = 0 or β = 0).
If a certain quantity is not uniquely determined by m we can average it over m for each

value of the set 0 � m � mmax. Thus for the square end-to-end distance of the chain, R2,
we calculate averages 〈R2〉m within the WL procedure and finally get canonical averages in a
standard way similar to (4):

〈R2〉(β) = 〈〈R2〉m〉can. (9)

The canonical mean square radius of inertia, R2
I = 1

2N2

∑
(i,j) r2

ij , can be calculated in the
same way:

〈
R2

I

〉
(β) = 〈〈

R2
I

〉
m

〉
can.

Averaging data according to (4), (5), (8) and (9) for N = 12, 30, 50 are presented in
figures 5–7. Specific energies and heat capacities as functions of T are shown for attractive
(ε < 0) and repulsive (ε > 0) interaction in figures 5(a) and (b). For repulsive interaction,
the specific energy approaches zero as T → 0 (neighbour avoiding walks) and tends to
〈m〉at(N)/N of the athermal case at T → ∞ (〈m〉at(N) = ∑mmax

m=0 m�0m

)
. For ε < 0 and

T → ∞ the specific energy tends to −〈m〉at(N)/N while for T → 0 it approaches the ground
states, −mmax(N)/N . Levels of 〈m〉at(N)/N are: 0.142, 0.174, 0.183 for N = 12, 30, 50.
These values evidently tend to some limit with increasing N. In [20] this limit is estimated as
0.193 (figure 10(a) in [20]) and it conforms to our results. In figure 5(a) we also compare
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Figure 5. Specific energies (ε-units), equation (4), and heat capacities, equation (5), as functions of
T (ε-units) for N = 12 (broken curve), 30 (dotted curve), 50 (full curve); (a) attractive case ε < 0;
(b) repulsive case ε > 0. Asymptotes for energy at T → ∞ are shown on the right-hand side
of (a) and (b) and for energy (ε < 0) at T → 0—on the left-hand side of (a) (the notation is the
same). Full squares and circles are energy data for N = 30, 50 derived from [21].
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Figure 6. Dependences of specific excess canonical entropy �SN/N on inverse temperature
β (ε−1-units) and their asymptotes at β → ∞ for ε > 0 and ε < 0; N = 12 (broken curve),
30 (dotted curve), 50 (full curve).

our energy data for N = 30, 50 with those scanned from figure 4 of [21]. Almost complete
coincidence of both results is observed with a slight deviation at lowest temperatures for
N = 50.

Specific heat capacities determined for ε > 0, figure 5(b), clearly approach some limiting
curve with increasing N while for ε < 0 such tendency is not so clear from the presented data.

Figure 6 presents specific excess canonical entropy (8) as a function of β both for ε > 0 and
ε < 0. All curves start at zero for β = 0 since infinite temperature corresponds to the athermal
case. Excess entropy is negative as far as interactions augment ordering of the chain in both
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Figure 7. Dependences of root mean square end-to-end distance
√

〈R2〉, equation (9), on the
inverse temperature β (ε−1-units) and their asymptotes at β → ∞ for ε > 0 and ε < 0; N = 12
(broken curve), 30 (dotted curve), 50 (full curve). Square roots of 12, 30, 50 (chain lines) are
shown on the left-hand side.

cases. Increase of β lowers the entropy and this fall is much greater for the case of attraction
due to the predominance of compact conformations; for ε > 0 it corresponds to comparatively
weak swelling of the polymer coil. All curves have horizontal asymptotes at β → ∞ which
can be determined as (see (8)) 1

N
�SN = 1

N
ln �00(N) for ε > 0 and 1

N
�SN = 1

N
ln �0mmax(N)

for ε < 0. For N = 12, 30, 50 these asymptotic levels are −0.1236,−0.1379,−0.1407 for
ε > 0 and −0.7736,−0.6872,−0.6680 for ε < 0.

Figure 7 shows β-dependences (〈R2〉(β))1/2. For each N both curves (ε > 0, ε < 0)

start at β = 0 from the point of the athermal regime and approach horizontal asymptotes for
β → ∞. For ε > 0 the dependences are monotonically increasing due to swelling while
for ε < 0 a strong decrease with β corresponds to compactization of chains. In the latter
case the approach of asymptotes for N = 12, 50 is accompanied by slight minima. First we
found this behaviour when comparing our results for a short chain (N = 12) with exact data,
figure 4. This effect is caused by the fact that conformations having maximum number of
contacts can give values of 〈R2〉m appreciably (up to 25%) greater than for the preceding
number. So for N = 12,mmax = 9 was observed in several spiral conformations of a
kind presented in [30] with 〈R〉9 exceeding 〈R〉8. Accordingly at intermediate temperatures
conformations with a smaller number of contacts but with slightly lower 〈R2〉 can yield a
greater contribution. The same effect in figure 7 for N = 50 corresponds to the nonmonotonic
behaviour of 〈R2〉m in the range 47 � m � 52. At the same time no trace of a minimum is
observed for N = 30. It should be pointed out here that this slight effect completely vanishes
for the averaged square radius of inertia

〈
R2

I

〉
(β).

According to scaling concepts [18, 19], the low temperature asymptotes for (〈R2〉(β))1/2

should scale as N3/5 for ε > 0 (neighbour avoiding walks) and as N1/3, for ε < 0 (formation
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of dense globules). Though our limited amount of data is insufficient for making serious tests
of such a kind, it is possible to find out that they do not contradict these dependences. In the
case ε > 0 we get values of

√〈
R2

N

〉/
N3/5 (β → ∞): 1.241, 1.285, 1.305 for N = 12, 30, 50

(scatter about 4%). In the case ε < 0 values of
√〈

R2
N

〉/
N1/3 (β → ∞) for the same set of N

are: 0.992; 0.842; 0.941 (scatter about 15%).

4. Continuous model

We consider the simplest continuous model,—a freely joined chain of N +1 monomers (beads)
with N bonds of fixed (unit) length, and study only the athermal case when each monomer
unit is a hard sphere of diameter a. Our aim is to determine the excess entropy for the
system with finite a,�S(a) = S(a) − S0, relative to the phantom chain. The entropy of
the latter can be determined as S0 = ln W0, where W0 = (4π)N . For chains with finite a, the
conformation space volume decreases from W0 to W(a) = W0 × ν(a) with ν(a) < 1, and so
�S(a) = ln ν(a) < 0.

For calculation of ν(a) we suggest the procedure of a random walk in the conformation
space of a phantom chain. Let us introduce a stochastic quantity: ξ = min(rij ) where rij is
the distance between all pairs of its nonbonded beads. It is clear that ξ lies between 0 and 2
(2 corresponds to stiff rods). If we divide this area of ξ into a finite number, Nb, intervals (boxes)
of length 2/Nb we can calculate normalized probabilities of corresponding conformational
states, �i, 1 � i � Nb. By integrating (summing up) these probabilities from a certain i up to
the boundary value, Nb, we determine νi for the corresponding ai . This way we can calculate
the excess entropy for given N in the whole range of a within a single MC run.

In order to obtain the initial chain conformation, one end of the chain (the 0th bead) is
kept fixed at the origin while the bead which follows is chosen homogeneously on a sphere of
a unit radius with the centre in the preceding one. The positions of all the following beads are
chosen in the same way. In other words, the initial configuration is an N-step purely random
walk in the continuous 3D space. A homogeneous modification of the conformation is carried
out within one of the two following procedures. The first one is analogous to that for the
lattice polymer: we choose homogeneously one of the N segments (e.g., the k0th) and change
its direction within the full spherical angle, 4π , with following parallel shift of the rest of
the pieces of the chain (k0 < k � N). Another procedure includes a choice of two arbitrary
nonbonded beads and subsequent random rotation of the piece between them within the full
angle, 2π . Tests showed the equivalence of both procedures. Most of the calculations were
carried out with the number of boxes Nb = 40 which corresponds to the width of intervals
2/Nb = 0.05. In the URW algorithm, the trial configuration is always accepted while in the
WL procedure condition (2) is additionally imposed.

Each WL calculation included 25 sweeps with initial value of Si = 0,�S0 = 1, the
increment in all cases was c = 0.75 and the length of a sweep was taken as 1000

ct−1 , where
t is the sweep number. The total number of MC steps was about 4 million. For different
chain lengths, the simulation time on the Pentium III 1 GHz computer varied between 5 min
and 20 h.

For test purposes, comparative calculations of �i within the URW and WL procedures
were carried out for N = 12, 20, figure 8(c). The situation is similar to those presented in
figures 2 and 3: in the vicinity of maxima within 4–5 orders we see good coincidence of both
methods; out of this range the URW completely fails while the WL yields smooth dependence
within 10 orders down. Unfortunately, we cannot compare our numerical results with exact
data which, in contrast to the lattice case, do not exist for the continuous model.
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Figure 8. Normalized probabilities �i for a freely joined chain (a) and values of νi (b) as
functions of monomer diameter ai = 2

Nb
(i − 1) for different chain lengths N: 3 (open circles),

4 (full triangles), 6 (open triangles), 9 (full squares), 12 (open squares), 15 (crosses), 20 (pluses),
30 (dots), 40 (full diamonds), 50 (open diamonds), 100 (full circles). (c) Comparison of �i

obtained by the WL and URW algorithms for N = 12 and 20 (WL—dots, crosses, URW—circles,
squares, respectively).

Figures 8(a) and (b) present our WL results for �i (a) and its integral νi (b) at a set
of chain lengths: N = 4, 6, 9, 12, 15, 20, 30, 50. These data enable us to calculate excess
specific entropy as �si(N) ≡ �SNi/N = ln νi/N . In figure 9 the latter is presented for each
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N

,
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N
) ln(1 − ( a
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ai as a function of N in the inverse N-scale. For comparison we also draw in figure 9 straight
lines approximating the excess specific entropy �SN(a)/N as

1

N
�SN(a) =

(
1 − 1

N

)
ln

(
1 −

(a

2

)2
)

. (10)

It is based on the following scheme. If we create a free joined N-bonded chain
conformation with the diameter of a spherical monomer a, the first monomer can move
around the origin (the fixed zeroth monomer) within the full spatial angle, 4π ; the second
monomer can move around the first one only within a limited spatial angle, ωa < 4π , which
can be expressed as ωa = 4π

(
1 − (

a
2

)2)
(for a = 0, ωa = 4π , for a = 2, ωa = 0). If

we neglect correlations in positions of subsequent monomers, we can assume that the third
monomer can move around the second one also within the spatial angle ωa , etc, up to the Nth
monomer. In this approximation the entropy is SN(a) = ln

(
4πω(N−1)

a

)
and the excess specific

entropy is determined by (10) as a linear function of N−1 with the slope dependent on a.
This scheme is exact only for N = 2. For longer chains true values of �SN(a)/N must

go below these straight lines in the N−1 plane as a result of correlations existing between
distant nonbonded spherical monomer units due to bending of the chain. In figure 9 it is seen
that for comparatively small a (a � 1.25), the calculated N−1 dependences actually go below
the related straight lines (10). They are rather smooth and it is possible to extrapolate them to
the infinite limit for specific entropy. For greater a (a > 1.25) another kind of dependence in
figure 9 is gradually established: the MC data almost strictly follow the appropriate straight
lines (10) up to N = 30. For greater N a steep jump to lower values is observed. This behaviour
is evidently caused by growing stiffness of chains with increasing monomer diameter a; this
stiffness holds for comparatively short chains and is broken only when the chain length exceeds
a certain threshold, e.g., N = 50 for a = 1.6–1.7.

Figure 10 shows the obtained dependences of the mean square end-to-end distance on the
number of bonds N, 4 � N � 50, for a set of monomer diameters in the range 0 � a � 1.25
approximated for each a by a power function. It is seen that for a = 0 (a phantom chain) the
N-dependence of 〈R2〉 is practically linear with the unit slope. It confirms the correctness of
our conformation change procedure since in this case the relation 〈R2〉 = Nl2 should hold.
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Figure 10. Dependence of the mean square end-to-end distance on the chain length, N, of
freely joined chains with different monomer diameters a: 0.00 (squares), 0.25 (diamonds),
0.50 (triangles), 0.75 (crosses), 1.00 (pluses), 1.25 (circles). Lines are power approximations
with the power: 1.00, 1.03, 1.13, 1.23, 1.31, 1.39 respectively.

For finite diameter the power increases with growth of a. Though for greater N it is not clear
whether these power dependences would hold, it is evident that for a = 2, i.e. in the trivial
case of stiff rods, the square law is valid for all N.

5. Conclusion

We extended the WL algorithm to ES-simulation of polymers starting with the simplest three-
dimensional models. For short lattice chains our numerical results were tested by comparing
them with the exact data. For the athermal lattice model we reproduced well the existing
scaling relations—the N-dependence of the number of SAWs and the mean square end-to-end
distance for SAWs. In the thermal case we calculated distributions over the number of contacts
and used them for obtaining a set of canonical averages—conformational energy, heat capacity,
entropy and mean square end-to-end distance. Some of our results were compared with MC
data from [20, 21]. For a freely joined continuous model in the athermal case we suggested
and carried out a variant of the WL algorithm providing us with excess entropy as a function
of the monomer diameter.

The method proved to be an effective tool for studying equilibrium properties of simple
models. It seems to be promising in further simulations including more complicated cases,
e.g., continuous models with fixed bond–bond angles and taking into account interactions,
closed and stretched chains, hetero-polymer molecules including polypeptides and cases of
polymer confinement.

It seems that the WL self-adjusting procedure could also be helpful in the enhancement
of various variants of the expanded ensemble method [31, 32] by optimizing (or complete
elimination of ) the preliminary stage. It should also be pointed out that the WL algorithm
itself could become an object of further study and optimization in order to enlarge its facilities.
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